Section 9 Implicit Differentiation

Notation

An equation such as $y = 3x + 5$ defines y as a function of x explicitly; x is the independent variable and y is the dependent variable. We could express this relationship using function notation: $y(x) = 3x + 5$.

Example 1: Implicitly-Defined Functions

Here are examples of other functions defined explicitly:

a) $x = x(t) = 3t^2 + 5t + 7$

b) $z = z(u) = \sqrt{u^3 - 5}$

c) $A = A(r) = \pi r^2$; The area of a circle is a function of the radius.

d) $C = C(r) = 2\pi r$; The circumference of a circle is a function of the radius.

If we have an equation, such as $5x^2 + y - 3 = 0$, we would say that this equation defines y in terms of x implicitly. If we solve for y, we can express the relationship as $y = y(x) = 3 - 5x^2$. This expresses y in terms of x explicitly.

In order to find the derivative, $y' = D_x y$ we think of the equation $5x^2 + y(x) - 3 = 0$ as defining y implicitly as a function of x and differentiate both sides of the equation with respect to x. This is called implicit differentiation.

In this example it was very easy to solve the equation to find an explicit representation of y in terms of x; one might be led to consider implicit differentiation a waste of resources. However, there will be implicitly defined functions whose derivatives we seek but whose equations are not solvable explicitly for the variable in question, for example $e^y - y = 5x$.
Implicit Differentiation

Definition: The process of finding the derivative of a function defined implicitly (such as by an equation) is called *implicit differentiation*.

Example 2: Implicit Differentiation

a) Find y' for $y = y(x)$ is given by $5x^2 + y - 3 = 0$.

<table>
<thead>
<tr>
<th>Implicitly</th>
<th>Explicitly</th>
</tr>
</thead>
<tbody>
<tr>
<td>$D_x (5x^2 + y - 3) = D_x 0$</td>
<td>$5x^2 + y - 3 = 0$, Solve for y.</td>
</tr>
<tr>
<td>$D_x (5x^2) + D_y y - D_y (3) = 0$</td>
<td>$y = 3 - 5x^2$, Differentiate</td>
</tr>
<tr>
<td>$10x + y' = 0$</td>
<td>$y' = -10x$</td>
</tr>
<tr>
<td>$y' = -10x$</td>
<td></td>
</tr>
</tbody>
</table>

Example 3: Implicit Differentiation

For y defined implicitly by $F(x, y) = x^2 + y^2 - 49 = 0$.

a) Find y'.
b) Find the slope of the graph at $x = \sqrt{24}$.

Solution:

Since $y = y(x)$ is given by $x^2 + [y(x)]^2 - 49 = 0$

Differentiate both sides with respect to x:

$$D_x \left[x^2 + [y(x)]^2 - 49 \right] = D_x 0$$

$$D_x x^2 + D_x [y(x)]^2 - D_x 49 = 0$$

Using the chain rule

$$D_x [y(x)]^2 = 2yy'$$

$$2x + 2yy' - 0 = 0$$

$$y' = -\frac{2x}{2y} = -\frac{x}{y}$$

To find the slope of the graph $x = \sqrt{24}$, after first solving for y, we evaluate y' for the given value of x and the appropriate value of y: If $x = \sqrt{24}$, then equation (1.1) gives $(\sqrt{24})^2 + y^2 - 49 = 0$. It follows that $y = \pm 5$.
If $y' = -\frac{x}{y}$, then the slope of the graph at $x = \sqrt{24}$ is given by the two different expressions:

$$m_1 = y'_{(\sqrt{24},5)} = -\frac{\sqrt{24}}{5}, \quad \text{and} \quad m_2 = y'_{(-\sqrt{24},5)} = -\frac{\sqrt{24}}{-5} = \frac{\sqrt{24}}{5}.$$

Notation: The symbols $y'_{(a,b)}$ mean that we are evaluating the function y' at $x = a$ and $y = b$.

Example 4: Implicit Differentiation

Find y', without solving explicitly for y, by using implicit differentiation. Find $y'_{(x,y)}$ for the given point.

a) $x^2 - y = 4e^y$; \hspace{1cm} (2,0) \\

b) $\ln y = 2y^2 - x$; \hspace{1cm} (2,1)
c) Find the equation(s) of the tangent line(s) to the graph of \(xy^2 - y - 2 = 0\) at \(x = 1\).

d) Find \(y'\) for \(y\) defined implicitly by the equation \(xe'' - 3y\sin x = 1\).

e) Find \(y'\) for the folium of Descartes defined implicitly by the equation \(x^3 + y^3 = 3xy\). Find the equation of the tangent line to the graph at the point \(\left(\frac{3}{2}, \frac{3}{2}\right)\).
Derivatives of Inverse Trigonometric Functions

We can use implicit differentiation to find the derivatives of the inverse trigonometric functions.

Example 5: Derivatives of Inverse Trigonometric Functions

Find the derivative of \(y = \cos^{-1} x \).

Let \(y = \cos^{-1} x \), then \(\cos y = x \) for \(0 \leq y \leq \pi \).

If we take the derivative of both sides using implicit differentiation, we have

\[
\cos y = x
\]

\[
\frac{d}{dx}(\cos y) = \frac{d}{dx}(x)
\]

\[
-\sin y \cdot y' = 1
\]

\[
y' = \frac{1}{-\sin y} = \frac{1}{-\sqrt{1 - \cos^2 y}} = \frac{1}{-\sqrt{1 - x^2}}
\]

Therefore, \((\cos^{-1} x)' = \frac{1}{-\sqrt{1 - x^2}} \).

Example 6: Derivatives of Inverse Trigonometric Functions

Find the derivative of \(y = \tan^{-1} x \).
Derivatives of Logarithmic Functions

Theorem:

- \[(\ln x)' = \frac{1}{x} \]
- \[(\log_a x)' = \frac{1}{x \ln a} \]
- \[(\ln u)' = \frac{1}{u} \]

Proof:

Example 7: Derivatives involving Logarithms

a) \[(\ln (\sin x))' = \]

b) \[(\sqrt[3]{\ln x})' = \]

c) \[(\log_2 (x + \sin x))' = \]
Logarithmic Differentiation

Sometimes it is convenient to find the derivative of an expression by first taking logarithms of both sides and then using implicit differentiation.

Example 8: Logarithmic Differentiation

Find y' using logarithmic differentiation:

$$y = \frac{(x - 3)^3(x + 1)^5}{\sqrt{(2x - 1)^7 \sin(x)}}$$

Example 9: Logarithmic Differentiation

Find y' using logarithmic differentiation:

$$y = x^x$$

Example 10: Logarithmic Differentiation

Find y' using logarithmic differentiation:

$$y^x = x^y$$