Section 2: The Definite Integral

In this section, we investigate what happens to the values of an approximating sum when we let the number of intervals \(n \) in the partition go to infinity.

Definition: The mesh of a partition is the length of the longest section (or sections) in the partition. That is, the mesh of any partition is the largest value of \(x_k - x_{k-1} = \Delta x_k \) over all possible values of \(k \).

The Definite Integral

Definition: If \(f \) is a function defined on an interval \([a, b]\) and the sums
\[
\sum_{k=1}^{n} f(c_k)(x_k - x_{k-1})
\]
approach a certain number as the mesh of the partitions of \([a, b]\) shrink towards 0 (regardless of the choice of \(c_k \) in each interval \([x_{k-1}, x_k]\)), that number is called the **definite integral** of \(f \) over \([a, b]\).

\[
\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \sum_{k=1}^{n} f(c_k)\Delta x_k
\]

The sum on the right-hand side is called a Reimann sum.

Theorem: Existence of the definite integral. Let \(f \) be a continuous function over an interval \([a, b]\). Then the approximating sums
\[
\sum_{k=1}^{n} f(c_k)(x_k - x_{k-1})
\]
approach a single number as the mesh of the partitions of \([a, b]\) approaches 0. Hence \(\int_{a}^{b} f(x)dx \) exists.
Example 1: Writing Reimann sums as integrals

Write the limit $\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{1 + (x_k)^2} \Delta x_k$ as a definite integral on the interval $[0, \frac{\pi}{2}]$.

Example 2: Evaluating a definite integral

Find the definite integral of the function $f(x) = 2x + 5$ over the interval $[0,1]$.
Example 3: **Evaluating a definite integral**

Use right-hand endpoints to express \(\int_{0}^{2} (2 - x^2) \, dx \) as a Reimann sum and then evaluate.

Example 4: **Writing an integral as a Reimann sum**

Express the integral \(\int_{0}^{\pi} \sin x \, dx \) as a Reimann sum. Use a calculator to approximate the sum of the first 50 terms.
Example 5: **Evaluating integrals by interpreting as areas**

Evaluate $\int_{-2}^{2} \sqrt{4-x^2} \, dx$ by interpreting in terms of an area.

The Midpoint Rule

Theorem: Midpoint Rule

\[
\int_a^b f(x) \, dx \approx \sum_{i=1}^{n} f(x_i) \Delta x = \Delta x \left[f(x_i) + f(x_{i+1}) + \cdots + f(x_n) \right]
\]

where $\Delta x = \frac{b-a}{n}$ and $x_i = \frac{x_{i-1} + x_i}{2}$ = midpoint of $[x_{i-1}, x_i]$.

Example 6: **Using the midpoint rule**

Use the midpoint rule to find rule with $n = 6$ to approximate the integral $\int_0^1 e^x \, dx$.
Interpretations of the Definite Integral

1) **Area of a plane region**: Area of $S = \int_a^b f(x)dx$ where $f(x)$ is the length of a cross section of S.

![Diagram](https://via.placeholder.com/150)

2) **Mass of a string**: Total Mass $= \int_a^b f(x)dx$, where $f(x)$ is the density of the string at the point x.

3) **Distance traveled**: Total Distance $= \int_a^b f(t)dt$ where $f(t)$ is the velocity at time t.

4) **The volume of a solid region**: Volume of $S = \int_a^b A(x)dx$, where $A(x)$ is the cross-sectional area at x.

5) **Work**: If an object moves along a straight line by a force $f(x)$ that varies continuously, then the work, W, done in moving the object from $x = a$ to $x = b$ is $W = \int_a^b f(x)dx$

Example 6: Definite Integral as an Area

Find the area above the x-axis and under the function $f(x) = 2x + 5$ over the interval $[0, 1]$.

The area is given by $\int_0^1 2x + 5dx$ from the previous examples we know that $\int_0^1 2x + 5dx = 6$.

Section 5.2 Definite Integrals.doc 11/19/2008
Properties of the Antiderivative and the Definite Integral

Antiderivatives

Definition: An antiderivative of the function \(f \) is denoted \(\int f(x)dx \). An antiderivative of the function \(f \) is any function \(F \) for which \(F' = f \).

Properties of the antiderivative:

1. **Theorem 1:** If \(F \) and \(G \) are two antiderivatives of \(f \) on an interval \([a, b]\), then there is a constant \(c \), such that \(F(x) = G(x) + c \)

2. **Theorem 2:** If \(f \) and \(g \) are two functions with antiderivatives \(\int f(x)dx \) and \(\int g(x)dx \), then the following hold:

 a) \(\int cf(x)dx = c \int f(x)dx \) for any constant \(c \).
 b) \(\int [f(x) + g(x)]dx = \int f(x)dx + \int g(x)dx \).
 c) \(\int [f(x) - g(x)]dx = \int f(x)dx - \int g(x)dx \).

Notation: We agree to write \(F(b) - F(a) \) as \(F(x)|_a^b \).

Terminology: In the definite integral \(\int_a^b f(x)dx \) and in the indefinite integral \(\int f(x)dx \), \(f(x) \) is called the **integrand**.